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Scattering of photons by plasmas 
J. RAE 
Department of Natural Philosophy, University of Glasgow 
MS.  received 29th July 1968 

Abstract. Thermodynamic Green function techniques are applied to the Compton 
scatter of photons by electrons in a hot plasma. An expression is obtained for the 
scattering rate, including relativistic effects but neglecting coupling to ions or other 
electrons ; this restricts the formula to high-energy photons and non-zero scattering 
angles. The method of calculating explicit cross sections is illustrated by deducing 
the known result for Doppler-broadened scattering from free electrons in the non- 
relativistic case. 

1. Introduction 
The  theory of incoherent light scattering by density fluctuations in a plasma has been 

approached in a variety of ways (Bernstein et al. 1964, Bekefi 1966). One of the most 
fundamental approaches to this subject is that of Dubois and his co-workers (Dubois et a2. 
1963, Dubois and Gilinsky 1964 a, b) which makes use of modern Green function and 
diagram techniques to obtain results from quantum field theory. The  papers referred to 
are based on a non-relativistic formalism which the authors use on grounds of simplicity 
(Dubois et al. 1963, Dubois 1967). However, it seems to the present author that the 
computational difficulties of the fully relativistic theory are more than outweighed by its 
generality and close correspondence to the usual formulation of quantum electrodynamics. 
The  calculation presented here is shallower than that of Dubois and Gilinsky (1964 a, b) 
in that it considers scattering from electrons and ignores coupling to ions. It is thus 
restricted to high-frequency photon energy loss or large-angle scattering, although within 
simple and explicit approximations the method allows any plasma temperature and any 
high energy of incident photon. 

2. Formulation of the scattering rate 
In  the usual formulation of quantum electrodynamics (Mandl 1959) the Compton 

Figure 1. Compton direct scatter. 

where ji), If) are the initial and final states of the many-electron system and 1 is summed 
over a complete set of such states. w t  is the energy component of the four-vector K,, E& 
the photon polarization and V the volume of the system. 
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If we put pi = (pz’, Ez’-,u), ,u being the plasma chemical potential, a homogeneous 
system requires 

with $ = +(O) and similarly for 4. 
(~,+(x)li> = <w> exp(iP*x) (2) 

Using (1) and (2) we can obtain 

There is an exchange diagram, shown in figure 2, which for Compton scatter is comparable 
in magnitude with Ml. Interchange of the photon operators leads to a contribution M2 

Figure 2. Compton exchange scatter. 

which is equal to Ml with ll? replaced by 

We define f’ = y4r +y4 with I?+ the Hermitian conjugate of r. 
The  scattering rate requires the square of the total amplitude M = Ml + M2 which 

introduces a squared 8-function into the expression. This is interpreted in the usual way 
in terms of the volume V and a normalization time l’. 

Further, for photons scattered by an equilibrium plasma of chemical potential p and 
temperature P - l ,  there is no interest in knowing the initial and final states of the scattering 
plasma electron. The  scattering rate must therefore be summed over all final states If) 
and a Gibbs average taken over initial states Ii}. In  this way we obtain 

21? = $(m){i(gi - k 2 )  +w}-~+~). (4) 

where K is the Fourier transform of the retarded two-particle Green function with variables 
set equal in pairs. Putting k l - k 2  = (q, w) it follows that K is analytic in the upper-half 
w plane and is therefore obtained from the equivalent thermodynamic Green function 
X(q, U,) for real U by 

Since the photons involved in (3) and (4) are real, the presence of the r’s in ( 5 )  does not 
K(q,  w )  = X(q, - iw +S) S +- 0,. 
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affect this argument applied to llVj2. This allows (5 )  to be evaluated by making the sub- 
stitutions K~ = - iw, + &, K~ = - iwz + 6, in the expression 

2VT 1 
- 1 m F  (7) 1 - exP( - Isw is 

where F corresponds to the sums over the four possible arrangements of external photons 
of diagrams of the form in figure 3. 

Figure 3. Form of diagrams of F. 

I n  these diagrams the external free-photon lines are assigned expressions (2Vw,)-1’2f(n), 
just as in quantum electrodynamics, while the remainder is evaluated according to the 
usual rules for thermodynamic Green functions (Alekseev 1961). T o  lowest order in e2 
these diagrams are those of figure 4 plus two exchange diagrams which give contributions 
equal to those of figure 4. The next-order diagrams are obtained by inserting photon lines 

Figure 4. Lowest-order diagrams. 

Figure 5 .  Higher-order diagrams. 

and polarization bubbles into those of figure 4. If U = IqLD1-l, with LD-l = (/3ne2)1/2 
the reciprocal Debye length and n the density, is considered to be much smaller than unity, 
it is possible to neglect diagrams coupling with the ions or other electrons. The  remaining 
higher diagrams give contributions smaller than that of figure 4 by factors of e2 or e4P3n 
which we take to be negligible, the only interesting cases being those of the types shown 
in figure 5. The first diagram of figure 5 might be expected to give a large, even dominant, 
contribution at K1 N K z ,  but in fact such diagrams cancel out to exactly zero by Furry’s 
theorem. 
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The presence of polarization bubbles in the diagrams of the second type introduces 
a dielectric factor 

into the free-photon factor, where IT,, is the usual polarization operator (Alekseev 1961). 
For convenience later we wish to maintain a normalization of one particle in a volume 

V so that the free-photon factor used above must be adjusted for 'modified photons' to 
(2Vw,)-1'2€1/2(ki)d(n).  This cancels out the effect of d on (7) ,  leaving it to be accounted for 
in the phase-space factors, and is analogous to the practice in classical electromagnetism 
of replacing e and c by e&-1'2 and cdd1I2 to take account of the dielectric medium (Bekefi 
1966). In  the _ _  random phase approximation and within the imaginary part in (7) ,  c" may be 

a- l '"k)  = (1 -k-2rIf iv(k))-1'2 

approximated by 
d = 1 - Re{k-2rII,v(k)} 

IT now being the zero-order approximation, This can be evaluated as by Rae (1968) with 
K 2  = -i6, 6 + 0, to correspond to real photons. The non-relativistic case gives 

rIvv(h) = - 3 m (1 +&) 
leading to the usual plasma dielectric factor d = 1 - wP2/wl2, wp being the plasma frequency 
fe2n1mV2.  
\ i ,  

From (7)  we have for the transition rate per unit volume 

- 4P-l(l -e-BW)-l Im  Fo R=-- lM2 
V T  

where F, corresponds to the sum of the two diagrams in figure 4 
e4 

F,  = - 2- 1 dp 2 Tr{I'Go(p)FGo(p +q)} wwlU2 (243 Pa 
(9) 

with Go the free-electron Green function 

Go@) = (ip; +m)- l ,  p 4  = (28 +1)+-' +ip. 

3. Calculation of the scattering rate 

Tr([P{i ($  +a1) + m } - l P )  +P){i($ - a,) +m)-l+n)](ip; +m)-l[+n){i(f +F1) +m}-l+m) 

The expression within the summation in (9) can be written 

+P"){i(f - a2) +m}-l+n)]{i(p; +#) +m)-'). 
This still contains a complete specification of the polarizations of initial and final photons. 
We average over these by operating with $Zk,n=l. A well-known argument of Feynman 
(1949) allows the above to be written in terms of a repeated suffix summation over m, n 
now ranging from 1 to 4: 
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and two other functions 
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The function F ,  of equation (9) now becomes 

We consider first the term Y / E  and split it into partial fractions in the variable p,, with 
no repeated factors. If the resulting terms are combined in pairs, each with its complex 
conjugate, the sum over p ,  can be performed using the standard result 

where E = (p2  + m2)li2 and n*(p) = (1 + exp P(E k p)} - l  is the electron-positron distribution 
function. The 1 in this formula leads to various divergences which are exactly those occur- 
ring in vacuum electrodynamics and are thus removed by renormalizing in the usual way, 
The  resulting expression is simplified by putting k12 = K 2 2  = 0 and, after a large amount of 
elementary algebra, can be expressed in the form 

1 : _E = i { ( p  . k,)2 - E2W12)((P . k2)2 - E Z W Z a )  ((2p . Q + q 2 ) 2  - 4 2 w 2  (2p . r +Y"2 -42r42 
@(k,, - k 2 , p )  + Y P  - 4n(P) w,, k2 ,  P) 

(11) 
where q = k , - k 2 ,  Y = k 1 + k 2 .  For equation (8) we require only the imaginary part of 
this, which arises from poles of the integrand in (10). The second term of (11) has no 
poles for realp and thus contributes nothing. The function 0 is given by 

@(FE,, k 2 , p )  = (2(p ' Q ) 2  +2m2P ' Q -2m4 +q2p * Q +hn2q2}{(2p * Q +q2){(p k ,  p * k2) 

+ E ~ o ~ w ~ }  + ~ E ~ w ( o ~ P .  k2 +02p. k,)}  
- E2w(m2 +2p . Q +4q2){2w(p . k ,  p . k2 + E ~ o , w , )  

+(2P ' Q +q2)(w1P k2 +w2p ' k d *  

We now return to (10) and look for a similar expression for XiD. In  this case there is a 
repeated factor which complicates the evaluation of the partial fractions. However, the 
terms from this have no poles for real p and can be discarded just as above. The terms 
from the non-repeated factor can be evaluated in the same way as (11) to give 

] (13)  I @(kl, k 2 , p )  + k 5 = ; {(Zp . Q + q 2 ) 2  - 4 2 0 2 )  ( ( p  . kl)2 - E2W12}2 ( ( p  . k2)2 - €2W22}2 

@ ( - h 2 ,  - k P )  X P  - %P) 

where 

@(kl, k 2 , p )  = { ( p  . k,)2q2 +Z(p . k,)'p . q +e2w12q2 +2e2wl2p . Q +4e2p . k l w l w }  

x (2m4 - 2m2p . k ,  +2m2p . q + ~ E ~ W , ~  +m2q2 + p  . k,q2) 

- 2 2 ( w l q 2 p  . k ,  + Z W ~  p . k ,  p . Q + W ( P  k,)2 + E ~ w ~ ~ o } ( w ~ ~ ~  +4W,p . k ,  

+2m2w - 2m2w,) (14) 
within the ranges where e4p3n and /3ne2w,-2 are small and, considering scattering away 
from the zero angle, we thus obtain from equations (8) and (10) to (14) a formula for the 
scattering rate 
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e4 1 .@I 1 
Im dp- R = -  (~4~17~ wlwz{l -exp( -,f?w)) E (2p. q +q2)2-4~2w2 

The  intensity of the incident beam is ... 1 aw, 

where ki2 = &(ki, w i ) w t 2 ,  These allow the differential scattering cross section to be 
computed from (15). 

4. The non-relativistic case 
Expression (15) is too complicated to handle generally but may serve as a starting point 

for specializing to different realms of physical interest. We show here how, in the simplest 
case (the non-relativistic case) the formulae reduce to known results. For this we have 
Pm $Y 1, w ,  < m and a($) a Maxwellian distribution. 

With a change of variable from p to p - i q  the relevant approximations to 0 and 0 
are, from (12) and (14), 

0 = ( - m2q2 - 2m4 +&m2q2)(2m2w1w2p . q) 
= 2m2w1w2p . q(  - 2m4 -$m2q2) 
= (2m2w12p . q)(Zm4 f m 2 q  . k, +2m2w12) -2m2(-  w l p  . q q . k,}( -2m2w2) 
= 2m2w,p. q(2m4w, +2m2wl3 +m2w,q. k ,  -2m2w2q .  k , ) .  

Then  (15) becomes 
e4 (1 - exp( - P w ) } - ,  R=- 

(243772 2mwlw2 

P 4exP[-P{E(P-$q)-CLH 
( p  . q)2-m2w2 x I m I d p  

The  required imaginary part is 

With this exponential factor the factor within in equation (16) has the value 2(1 +cos2 #J), 
where is the angle between k ,  and k,, so that the scattering rate is 

e4 1 +cos2 4 
ip=- 

( 2 4 3 ~ 2  pq 2 

with y o  = e2/4.rrm the classical electron radius. 
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The dielectric function is that evaluated in 5 2 so that the intensity of the incident 
beam is 

and the density of final states is 

This gives for the cross section in plasma units, i.e. momenta in units of L,-l and energies 
in units of wp (Dubois 1964 a), 

which agrees with well-known expressions (Akhiezer 1967, Dubois 1964 a) for Doppler- 
broadened scattering from free electrons. 

5. Conclusions 
Modern Green function and diagram techniques allow the Compton cross section for 

scatter in plasmas to be derived from basic assumptions about statistical physics and 
electromagnetism. Assuming the physical parameters are such that e4F3n and e2/3nw1-2 
are small and considering scattering away from zero angle, a general expression (15) is 
obtained for scattering rates for a wide range of temperature and energy. The calculations 
of cross sections for different physical regions are best done separately, the method being 
illustrated by deducing the known result in the non-relativistic case. 
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